دسته بندی اهداف سوناری با استفاده از روش omkc
نویسندگان
چکیده
با توجه به خصوصیات فیزیکی پیچیده ی اهداف سوناری، طبقه بندی و تمیز دادن اهداف واقعی از اهداف کاذب یکی از زمینه های دشوار و پیچیده برای محققان و صنعتگران این حوزه است. با توجه به این ویژگی های اهداف سوناری، روش های هوشمند در دسته بندی این نوع دادگان دارای توانایی های منحصر به فردی می باشند. از این رو در سال های اخیر استفاده از شبکه های عصبی و ماشین بردار پشتیبانی در این زمینه کاربرد فراوانی داشته است. با توجه به اینکه دادگان سوناری دارای ابعاد بالایی در فضای ورودی می باشند، نمی توان آن ها را به صورت خطی از یکدیگر تفکیک نمود. بدین منظور، این مقاله برای طبقه بندی اهداف سوناری از روشی به نام omkc استفاده می نماید. نتایج حاصله نشان می دهد که این روش دقت دسته بندی معادل با 763/98% را ارائه می کند که نسبت به روش های کلاسیک با حداکثر دقت 05/97، بهتر می باشد، ولی زمان اجرای الگوریتم 1014/0 ثانیه افزایش پیدا می کند که برای جبران این نقص، از انتخاب و ترکیب هسته ها به صورت تصادفی استفاده می شود.
منابع مشابه
دستهبندی اهداف سوناری با استفاده از روش OMKC
با توجه به خصوصیات فیزیکی پیچیدهی اهداف سوناری، طبقهبندی و تمیز دادن اهداف واقعی از اهداف کاذب یکی از زمینههای دشوار و پیچیده برای محققان و صنعتگران این حوزه است. با توجه به این ویژگیهای اهداف سوناری، روشهای هوشمند در دستهبندی این نوع دادگان دارای تواناییهای منحصر به فردی میباشند. از اینرو در سالهای اخیر استفاده از شبکههای عصبی و ماشین بردار پشتیبانی در این زمینه کاربرد فراوانی داشت...
متن کاملدسته بندی اهداف سوناری با استفاده از روش ترکیبی ازدحام ذرات و جستجوی گرانشی
با توجه به خصوصیات فیزیکی بسیار نزدیک اهداف واقعی و کلاترِ سونار فعال، تفکیک این اهداف، از موضوعات چالشبرانگیز محققان و صنعتگران حوزه آکوستیک میباشد. شبکههای عصبی چندلایه (MLP) یکی از پرکاربردترین شبکههای عصبی در دستهبندی اهداف دنیای واقعی هستند. آموزش از مهمترین بخشهای توسعه این نوع شبکه ها است که در سالهای اخیر بسیار مورد توجه قرار گرفته است. به منظور آموزش شبکههای MLP از دیر باز استف...
متن کاملدسته بندی اهداف سوناری با استفاده از روش ترکیبی ازدحام ذرات و جستجوی گرانشی
با توجه به خصوصیات فیزیکی بسیار نزدیک اهداف واقعی و کلاترِ سونار فعال، تفکیک این اهداف، از موضوعات چالش برانگیز محققان و صنعت گران حوزه آکوستیک می باشد. شبکه های عصبی چندلایه (mlp) یکی از پرکاربردترین شبکه های عصبی در دسته بندی اهداف دنیای واقعی هستند. آموزش از مهمترین بخش های توسعه این نوع شبکه ها است که در سال های اخیر بسیار مورد توجه قرار گرفته است. به منظور آموزش شبکه های mlp از دیر باز استف...
متن کاملدسته بندی اهداف سوناری توسط الگوریتم بهینه ساز ازدحام ذرات با گروه های مستقل
با توجه به اینکه دادگان سوناری دارای ابعاد بالا و بهینه های محلی زیادی می باشند، دسته بندی کننده های متعارف توانایی دسته بندی مناسب این گونه اهداف را ندارند. استفاده از ترکیب بهینه ساز ازدحام ذرات (pso) و شبکه های عصبی مصنوعی (ann) یکی از راه حل هایی است که در چند سال اخیر برای غلبه بر این مشکل موردتوجه قرار گرفته است. در کاربرد دادگان با ابعاد بالا، الگوریتم pso دارای دو مشکل به دام افتادن در ...
متن کاملدسته بندی و شناسائی اهداف زیرآبی بر اساس اصوات منتشره
This paper investigates an underwater noise target classification algorithm in order to identify vessels in shallow water. To this aim the Hilbert Huang transform has been used to extract features in order to be used in a classifier. The Support Vector Machine has been considered to identify targets. The proposed method based on Hilbert Huang Transform shows considerable gain against similar ap...
متن کاملارائه ی یک مدل جهت دستهبندی متون فارسی با استفاده از ترکیب روش های دسته بندی
برای دستهبندی متن از تکنیکهای استخراج اطلاعات، پردازش زبان طبیعی و یادگیری ماشین به طور وسیع استفاده میشود به طور کلی هدف یک دسته بند متون، دستهبندی اسناد در قالب تعداد معینی از دستههای از پیش تعیین شده میباشد. هر سند میتواند در یک، چند و یا هیچ دستهای قرار بگیرد. در مورد هر سند به این سؤال پاسخ داده خواهد شد که این سند در کدام یک از دستهها قرار میگیرد. این موضوع میتواند در قالب یک ی...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
فصلنامه علوم و فناوری دریاناشر: دانشگاه علوم دریایی امام خمینی (ره)
ISSN 1735-5346
دوره 72
شماره 72 2015
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023